1,980 research outputs found

    Sampled-data fuzzy controller for continuous nonlinear systems

    Get PDF
    The sampled-data fuzzy control of nonlinear systems is presented. The consequents of the fuzzy controller rules are linear sampled-data sub-controllers. As a result, the fuzzy controller is a weighted sum of some linear sampled-data sub-controllers that can be implemented by a microcontroller or a digital computer to lower the implementation cost. Consequently, a hybrid fuzzy controller consisting of continuous-time grades of memberships and discrete-time sub-controller is obtained. The system stability of the fuzzy control system is investigated on the basis of Lyapunov-based approach. The sampling activity introduces discontinuity to complicate the system dynamics and make the stability analysis difficult. The proposed fuzzy controller exhibits a favourable property to alleviate the conservativeness of the stability analysis. Furthermore, linear matrix inequality-based performance conditions are derived to guarantee the system performance of the fuzzy control system. An application example is given to illustrate the merits of the proposed approac

    Video assisted thoracoscopic surgery for spinal conditions

    Get PDF
    Neurology India534489-49

    Very fast formation of superconducting MgB2/Fe wires with high Jc

    Full text link
    In this paper we have investigated the effects of sintering time and temperature on the formation and critical current densities of Fe-clad MgB2 wires. MgB2 wires were fabricated using the powder-in-tube process and sintered for different periods of time at predetermined temperatures. All the samples were examined using XRD, SEM and magnetisation measurements. In contrast to the common practice of sintering for several hours, the present results show that there is no need for prolonged heat treatment in the fabrication of Fe-clad MgB2 wires. A total time in the furnace of several minutes is more than enough to form nearly pure MgB2 with high performance characteristics. The results from Tc, Jc and Hirr show convincingly that the samples which were sintered for 3 minutes above 800 oC are as good as those sintered for longer times. In fact, the Jc field performance for the most rapidly sintered sample is slightly better than for all other samples. Jc of 4.5 times 10 ^5 A/cm2 in zero field and above 10 ^5 A/cm2 in 2T at 15 K has been achieved for the best Fe-clad MgB2 wires. As a result of such a short sintering there is no need for using high purity argon protection and it is possible to carry out the heat treatment in a much less protective atmosphere or in air. These findings substantially simplify the fabrication process, making it possible to have a continuous process for fabrication and reducing the costs for large-scale production of MgB2 wires.Comment: 15 pages, one table, 9 figures, submitted to Physica C on June 8, 200

    Flux Jumping and a Bulk-to-Granular Transition in the Magnetization of a Compacted and Sintered MgB2 Superconductor

    Full text link
    The recent discovery of intermediate-temperature superconductivity (ITC) in MgB2 by Akimitsu et al. and its almost simultaneous explanation in terms of a hole-carrier-based pairing mechanism by Hirsch, has triggered an avalanche of studies of its structural, magnetic and transport properties. As a further contribution to the field we report the results of field (H) and temperature (T) dependent magnetization (M) measurements of a pellet of uniform, large-grain sintered MgB2. We show that at low temperatures the size of the pellet and its critical current density, Jc(H) - i.e. its M(H) - ensure low field flux jumping, which of course ceases when M(H) drops below a critical value. With further increase of H and T the individual grains decouple and the M(H) loops drop to lower lying branches, unresolved in the usual full M(H) representation. After taking into account the sample size and grain size, respectively, the bulk sample and the grains were deduced to exhibit the same magnetically determined Jc s (e.g. 105 A/cm2, 20 K, 0T) and hence that for each temperature of measurement Jc(H) decreased monotonically with H over the entire field range, except for a gap within the grain-decoupling zone.Comment: 7 pages, 6 figures, Changes: Fig 6 Vertical scale an order of magnitude out (changed figure and associated text). Also corrected typo in last sectio

    Longitudinal changes in prospective memory and their clinical correlates at 1-year follow-up in first-episode schizophrenia

    Get PDF
    This study aimed to investigate prospective memory (PM) and the association with clinical factors at 1-year follow-up in first-episode schizophrenia (FES). Thirty-two FES patients recruited from a university-affiliated psychiatric hospital in Beijing and 17 healthy community controls (HCs) were included. Time- and event-based PM (TBPM and EBPM) performances were measured with the Chinese version of the Cambridge Prospective Memory Test (CCAMPROMPT) at baseline and at one-year follow-up. A number of other neurocognitive tests were also administered. Remission was determined at the endpoint according to the PANSS score _ 3 for selected items. Repeated measures analysis of variance revealed a significant interaction between time (baseline vs. endpoint) and group (FES vs. HCs) for EBPM (F(1, 44) = 8.8, p = 0.005) and for all neurocognitive components. Paired samples ttests showed significant improvement in EBPM in FES (13.1±3.7 vs. 10.3±4.8; t = 3.065, p = 0.004), compared to HCs (15.7±3.6 vs. 16.5±2.3; t = -1.248, p = 0.230). A remission rate of 59.4% was found in the FES group. Analysis of covariance revealed that remitters performed significantly better on EBPM (14.9±2.6 vs. 10.4±3.6; F(1, 25) = 12.2, p = 0.002) than non-remitters at study endpoint. The association between EBPM and 12-month clinical improvement in FES suggests that EBPM may be a potential neurocognitive marker for the effectiveness of standard pharmacotherapy. Furthermore, the findings also imply that PM may not be strictly a trait-related endophenotype as indicated in previous studies

    Coupled superconducting qudit-resonator system: Energy spectrum, state population, and state transition under microwave drive

    Get PDF
    Superconducting quantum multilevel systems coupled to resonators have recently been considered in some applications such as microwave lasing and high-fidelity quantum logical gates. In this work, using an rf-SQUID type phase qudit coupled to a microwave coplanar waveguide resonator, we study both theoretically and experimentally the energy spectrum of the system when the qudit level spacings are varied around the resonator frequency by changing the magnetic flux applied to the qudit loop. We show that the experimental result can be well described by a theoretical model that extends from the usual two-level Jaynes-Cummings system to the present four-level system. It is also shown that due to the small anharmonicity of the phase device a simplified model capturing the leading state interactions fits the experimental spectra very well. Furthermore we use the Lindblad master equation containing various relaxation and dephasing processes to calculate the level populations in the simpler qutrit-resonator system, which allows a clear understanding of the dynamics of the system under the microwave drive. Our results help to better understand and perform the experiments of coupled multilevel and resonator systems and can be applied in the case of transmon or Xmon qudits having similar anharmonicity to the present phase device.This work was supported by the Ministry of Science and Technology of China (Grants No. 2014CB921202, No. 2015CB921104, and No. 2016YFA0300601),the National Natural Science Foundation of China (Grants No. 91321208 and No. 11674380)the Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB08-3)S.H. acknowledges support by the US NSF (PHY-1314861)

    Variable weight neural networks and their applications on material surface and epilepsy seizure phase classifications

    Get PDF
    This paper presents a novel neural network having variable weights, which is able to improve its learning and generalization capabilities, to deal with classification problems. The variable weight neural network (VWNN) allows its weights to be changed in operation according to the characteristic of the network inputs so that it demonstrates the ability to adapt to different characteristics of input data resulting in better performance compared with ordinary neural networks with fixed weights. The effectiveness of the VWNN is tested with the consideration of two real-life applications. The first application is on the classification of materials using the data collected by a robot finger with tactile sensors sliding along the surface of a given material. The second application considers the classification of seizure phases of epilepsy (seizure-free, pre-seizure and seizure phases) using real clinical data. Comparisons are performed with some traditional classification methods including neural network, k-nearest neighbors and naive Bayes classification techniques. It is shown that the VWNN classifier outperforms the traditional methods in terms of classification accuracy and robustness property when input datais contaminated by noise

    China’s emerging global role: dissatisfied responsible great power

    Get PDF
    China has (re)emerged as a great power in a world not of its own making. The distribution of power in major organisations and the dominant norms of international interactions are deemed to unfairly favour the existing Western powers, and at times obstruct China’s ability to meet national development goals. Nevertheless, engaging the global economy has been a key source of economic growth (thus helping to maintain regime stability), and establishing China’s credentials as a responsible global actor is seen as a means of ensuring continued access to what China needs. As an emerging great power that is also still in many respects a developing country, China’s challenge is to change the global order in ways that do not cause global instability or generate crises that would damage China’s own ability to generate economic growth and ensure political stability

    New supersymmetric solutions of N=2, D=5 gauged supergravity with hyperscalars

    Get PDF
    We construct new supersymmetric solutions, including AdS bubbles, in an N=2 truncation of five-dimensional N=8 gauged supergravity. This particular truncation is given by N=2 gauged supergravity coupled to two vector multiples and three incomplete hypermultiplets, and was originally investigated in the context of obtaining regular AdS bubble geometries with multiple active R-charges. We focus on cohomogeneity-one solutions corresponding to objects with two equal angular momenta and up to three independent R-charges. Curiously, we find a new set of zero and negative mass solitons asymptotic to AdS_5/Z_k, for k \ge 3, which are everywhere regular without closed timelike curves.Comment: Latex 3 times, 42 page

    n-Heptane hydroconversion over nickel-loaded aluminum- and/or boron-containing BEA zeolites prepared by recrystallization of magadiite varieties

    Get PDF
    Phase-pure [Al]BEA and [Al,B]BEA zeolites, prepared by solid-state recrystallization of synthetic aluminum-containing magadiites and conventionally synthesized [B]BEA, were tested, after ion exchange with nickel, as bifunctional catalysts for hydroconversion of n-heptane. The reducibility of nickel ions incorporated into BEA zeolites by ion exchange was investigated by temperature-programmed reduction (TPR). The acidity of the samples was characterized with strong (pyridine (Py), ammonia (NH3)) and weak (nitrogen) bases. The adsorbed bases were studied by transmission FT-IR (Py), diffuse reflectance infrared Fourier-transform (DRIFT) spectroscopy (N2), and temperature-programmed ammonia evolution (TPAE, NH3). Over Ni/H-[B]BEA the reactants were completely converted via fast hydrogenolysis, whereas this reaction pathway plays only a negligible role in the hydroconversion over Ni/H-[Al]BEA and Ni/H-[Al,B]BEA zeolites. Boron-containing BEA zeolites were less active catalysts than the boron-free catalyst in the principal unimolecular hydroconversion reactions. However, incorporation of boron into the framework of BEA zeolite results in a considerable selectivity shift towards isomerization. Results suggest that the acid strength of bridged hydroxyls, probed with weak (N2) and strong basis (pyridine), was found to be similar in the boron-free and boron-containing BEA samples. The decrease in the isomerization rate and the increase of the apparent activation energy upon incorporation of boron may be attributed to the decrease in the heat of n-heptane adsorption
    corecore